[干货分享] 最细致的卷积神经网络算法解析 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
爱意满满的作品展示区。
moonshile
V2EX    分享创造

[干货分享] 最细致的卷积神经网络算法解析

  •  
  •   moonshle 2015-09-17 11:14:12 +08:00 9052 次点击
    这是一个创建于 3745 天前的主题,其中的信息可能已经有所发展或是发生改变。

    最近一两周认真学习了一下卷积神经网络算法,无奈很难查到详细的资料,大多数要么泛泛谈一下概念,要么直接给个不知对错的公式。因此我还是自行脑补了很多推导过程,不想废弃,就总结成了一篇博客,分享给大家。欢迎大家拍砖!

    http://www.moonshile.com/post/juan-ji-shen-jing-wang-luo-quan-mian-jie-xi

    另外,我还计划再写一个 demo ,如果真的写了,也会分享出来的~

    第 1 条附言    2015-09-19 14:57:27 +08:00

    梯度发散的疑问已经解决~

    然后又有新的疑问的:在卷积层回传残差的时候,是用更新之前还是更新之后的权值?

    22 条回复    2023-04-24 16:23:55 +08:00
    wavefly
        1
    wavefly  
       2015-09-17 11:53:54 +08:00
    高大上的既视感
    shadowind
        2
    shadowind  
       2015-09-17 12:25:42 +08:00   1
    哇,写的好详细~~赞一个~~

    不过有以下几点想补充以下:
    - 输入图像一般需要归一化,但这个归一化应该是直接除以 255 ,即最大像素值,不是使用 sigmoid 或者 tanh 函数吧。
    - 梯度发散:这个就像你说的那样,因为本身已经把输入归一化,而且更新梯度时一般都有个学习率的值, 0 到 1 之间的多个值相乘,就会变得很小,以至于无法更新参数的值,这就是梯度发散了。当然,训练数据的不合理也会导致梯度发散。其实,最终收敛的结果就是学习到的模型。
    - 高斯池化:池化参数符合高斯分布,这个你了解下图像模糊的公式,就知道这其实也是卷积啦~~

    去年研究过一段深度学习,上面几点理解可能会有偏差,与君互勉~~ :-P
    ilotuo
        3
    ilotuo  
       2015-09-17 12:53:02 +08:00
    加油~已加 pocket 晚上再看
    moonshile
        4
    moonshile  
    OP
       2015-09-17 14:00:48 +08:00
    @shadowind 看得好仔细,谢谢!我是刚刚开始学习,需要补充的地方太多啦
    moonshile
        5
    moonshile  
    OP
       2015-09-17 14:07:38 +08:00
    @ilotuo 好啊,欢迎到时候使劲拍砖!
    est
        6
    est  
       2015-09-17 14:29:02 +08:00
    技术贴留名。。。
    egrcc
        7
    egrcc  
       2015-09-17 14:44:06 +08:00
    赞!不过数学公式不太好看,建议楼主考虑支持下 mathjax 。
    rock_cloud
        8
    rock_cloud  
       2015-09-17 14:45:39 +08:00
    moonshile
        9
    moonshile  
    OP
       2015-09-17 20:06:40 +08:00
    @shadowind 我又想了一下,如此说来,那 CNN 其实对梯度发散也是没招了?
    moonshile
        10
    moonshile  
    OP
       2015-09-17 20:07:44 +08:00
    @egrcc 嗯,这些公式是用 LaTeX 写的,然后用了一个服务变成图片。。你看一下图片的链接就知道了。。。
    moonshile
        11
    moonshile  
    OP
       2015-09-17 20:08:16 +08:00
    @rock_cloud 嗯,这个教程确实不错,我之前也看过的~
    mahone3297
        12
    mahone3297  
       2015-09-17 21:50:43 +08:00
    太高大上了,函数看不懂。。。 damn 。。。
    egrcc
        13
    egrcc  
       2015-09-18 08:33:51 +08:00   1
    @moonshile 你可以直接嵌入 mathjax 的 js 文件,然后就会直接渲染成公式,不会变成图片,这样更美观一些
        14
    moonshile  
    OP
       2015-09-18 08:57:00 +08:00
    @egrcc 好的,我试试,谢谢!
    shadowind
        15
    shadowind  
       2015-09-18 10:11:13 +08:00
    @moonshile 招数就是调参啊,感觉用 CNN ,一个重点在于数据准备,另一个重点就在于调参了,嘿嘿~~改改学习率什么的,又是一轮漫长的训练。
    moonshile
        16
    moonshile  
    OP
       2015-09-18 10:36:53 +08:00
    @shadowind 貌似任何机器学习算法的招数都是这样。。不过我这里着重的推导过程,不然看着代码或者公式结果似懂非懂。。调参上我还是菜鸟,需要练习。。
    zerh925
        17
    zerh925  
       2015-09-20 01:29:02 +08:00
    BP 神经网络没有使用最小二乘排除 local minimal 吗
    moonshile
        18
    moonshile  
    OP
       2015-09-20 08:45:39 +08:00
    @zerh925 它是通过损失函数最小化求解的,我自己的理解吧,这个相当于就是最小二乘吧。。
    l6751902
        19
    l6751902  
       2015-09-21 18:11:01 +08:00
    @moonshile 为啥网页刷新后能显示公式,当切换 tab 或滚动后就变[Math Processing Error]了
    moonshile
        20
    moonshile  
    OP
       2015-09-22 09:09:03 +08:00
    @l6751902 这个我还真没遇见过。。你用的什么浏览器?换个浏览器试试,或者看看这里的公式能不恩那个显示 https://www.mathjax.org/
    l6751902
        21
    l6751902  
       2015-09-22 20:08:15 +08:00
    firefox40.0.3 , mathjax.org 上的没问题, 还有我开网银兼容模式也没问题。。
    alafun
        22
    alafun  
       2023-04-24 16:23:55 +08:00
    打不开了
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     3685 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 26ms UTC 00:54 PVG 08:54 LAX 16:54 JFK 19:54
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86