V 友们,考察你们计算能力的时候到了,给出一个递推题目的数值解 - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
这是一个专门讨论 idea 的地方。

每个人的时间,资源是有限的,有的时候你或许能够想到很多 idea,但是由于现实的限制,却并不是所有的 idea 都能够成为现实。

那这个时候,不妨可以把那些 idea 分享出来,启发别人。
mathzhaoliang
V2EX    奇思妙想

V 友们,考察你们计算能力的时候到了,给出一个递推题目的数值解

  •  
  •   mathzhaoliang 2020-08-11 21:54:12 +08:00 4145 次点击
    这是一个创建于 1955 天前的主题,其中的信息可能已经有所发展或是发生改变。

    有这么一个函数 f(x, y),其中 x, y 都是非负整数,f(x,y) 的值为非负实数。

    已知 f 满足如下条件:

    1. f(x, 0) = 0 对任何 x 成立
    2. f(0, y) = y 对任何 y 成立
    3. f(x, y) = f(y-1, y) 对任何 x >= y > 0 成立
    4. f(x, y) = [xf(x+1, y-1) + yf(x-1, y+1)] / (x+y) 对任何 y > x > 0 成立

    请写出一个程序,可以计算 f(10000, 10000) 的值。

    给出可行解的朋友可以留二维码地址,有红包打赏。

    27 条回复    2020-08-19 21:32:50 +08:00
    huabalance
        1
    huabalance  
       2020-08-12 11:54:40 +08:00
    `f(x, y) = [xf(x+1, y-1) + yf(x-1, y+1)] / (x+y) 对任何 y > x > 0 成立`

    这一条会导致无尽的循环。例子:x=2, y=3
    rekulas
        2
    rekulas  
       2020-08-12 13:13:05 +08:00
    @huabalance 2,3 还可以通过变形计算出来,但是还有很多这样的组合,可能不能通过常规递归方法来计算
    mathzhaoliang
        3
    mathzhaoliang  
    OP
       2020-08-12 14:24:00 +08:00
    @huabalance 你要是直接调用递归是不行的。实际上 f(2,3) 可以解方程组解出来。
    huabalance
        4
    huabalance  
       2020-08-12 17:07:47 +08:00
    @rekulas
    @mathzhaoliang 受教了二位。。还有这样的思路。
    hebin
        5
    hebin  
       2020-08-12 22:58:02 +08:00 via iPhone
    没有很懂 第三个不是可以推出来 f x y = f 0 y = y , 第四个又能随便算出如 f 1 2 != 2,
    mathzhaoliang
        6
    mathzhaoliang  
    OP
       2020-08-13 11:08:01 +08:00
    @hebin 第三个关系式到了 f(y-1, y) 以后,由于 y-1 < y 就不满足 3 了。
    mathzhaoliang
        8
    mathzhaoliang  
    OP
       2020-08-13 15:29:58 +08:00
    @no1xsyzy 虽然我没看懂,但是看到了求逆和计算矩阵乘法,感觉思路有点靠谱。但是对 n=10000 的情形运行太慢了。
    mathzhaoliang
        9
    mathzhaoliang  
    OP
       2020-08-13 16:26:57 +08:00
    @no1xsyzy 你的程序逻辑是对的,就是有点太慢了,对 x = y = 10000 的情形跑不动。
    xml123
        10
    xml123  
       2020-08-13 22:44:32 +08:00
    只能算个 x=y=1000 的规模
    ITJoker
        11
    ITJoker  
       2020-08-14 23:47:01 +08:00
    我有个思路,前面的老哥写的代码虽然遍历可能太慢。
    但是如果我们另寻他路,我不知道可不可以,
    首先先生成( 0,100 )的数字
    求出 f(x,x)的值,例:f(1,1) , f(2,2).....
    最后生成的图像如下
    ![Figure_1.png]( https://i.loli.net/2020/08/14/SLHFJev5QE6Mquj.png)
    因此,这是个一次函数
    然后拟合结果为:```y = 1.856 x - 3.798```
    虽然我觉得这个答案可能不大准确,但是应该算出来的答案误差也不是很大,拿来当估值也是可以的。XD
    ITJoker
        12
    ITJoker  
       2020-08-14 23:47:59 +08:00
    ```y = 1.85631216*x -3.79846311```
    ITJoker
        13
    ITJoker  
       2020-08-15 00:07:37 +08:00
    之前的有点问题,用哪个老兄计算的方法,最多可以计算到 109
    我重新拟合了下:y = (1.86313312*x -4.0335139)
    误差范围: (1.2019039967254912,1.2535931255835067)
    ITJoker
        14
    ITJoker  
       2020-08-15 00:17:09 +08:00
    正确误差范围:(-0.8856246689377087,4.0335139)
    太乌龙了,代码写错了|||
    mathzhaoliang
        15
    mathzhaoliang  
    OP
       2020-08-15 09:28:14 +08:00
    @ITJoker 这是一份我写的代码,使用了一个递推关系:

    令 v_k = f(k, k), p_k = \binom{2k}{k} / 2^{2k},则

    v_{k+1} = (1- p_k) / (1 + p_k) v_k + (2k+1) * (2p_k) / (1+P_k)

    ```python
    from decimal import *

    pi = 3.14159265358979

    getcontext().prec = 20

    def solve_sheep(n):
    p = [0 for _ in range(n + 1)]
    v = [0 for _ in range(n + 1)]
    v[1] = 1
    p[1] = Decimal(0.5)
    for k in range(2, n + 1):
    p[k] = (1 - 1 / Decimal(2 * k)) * p[k - 1]
    for k in range(1, n):
    w = (1 - p[k]) / (1 + p[k])
    v[k + 1] = w * v[k] + (1 - w) * (2 * k + 1)

    return v[n]

    def estimate_sheep(n):
    return 2 * n + pi / 4 - (pi * n)**0.5

    print(solve_sheep(10000))
    print(estimate_sheep(10000))
    ```
    spcharc
        16
    spcharc  
       2020-08-16 17:55:20 +08:00
    得到了 f(10000,10000)精确值,存入文件一看有 60M 大,也是无语。试着让 Python 读出来再 eval(),结果一个小时过去都没 load 完…
    spcharc
        17
    spcharc  
       2020-08-16 18:36:01 +08:00
    @spcharc #16
    使用的是楼主提供的递推程序。完全看不出为什么会有这个递推关系
    jingslunt
        18
    jingslunt  
       2020-08-17 08:56:22 +08:00 via Android
    我也出道估计你解不出来的题
    odd(n) :
    while(n>1)
    if(odd(n))
    n=3*n+1;
    else
    n=n/2;
    其中 odd(n)为奇数。
    找出这个递归函数最终值不为 1 的那个 n 值。
    jingslunt
        19
    jingslunt  
       2020-08-17 09:02:46 +08:00 via Android
    其中 odd(n)为奇数就执行 if 下的赋值,偶数执行 else 下的赋值,找出最终递归值不唯一的那个 n
    mathzhaoliang
        20
    mathzhaoliang  
    OP
       2020-08-17 09:55:46 +08:00
    @spcharc 你运行的代码肯定做了修改,只计算 f(10000, 10000) 的值一秒都用不了。
    mathzhaoliang
        21
    mathzhaoliang  
    OP
       2020-08-17 09:57:01 +08:00
    @jingslunt 我出的问题是有确定可行的解的。
    dongyx
        22
    dongyx  
       2020-08-17 17:16:06 +08:00
    有意思的问题。

    我目前的思路是动态规划,计算顺序是一条对角线一条对角线地算,不断地填充左上三角。

    算第 n 条对角线的时候,其实算一个一维的二阶递推式,需要 O(n)的时间,那么要算 f(n, n)需要 O(n^2),感觉算 f(10000, 100000)有点吃力。我想看看能不能优化一下算一条对角线的做法,可惜系数不是常数,不然就可以矩阵快速幂了。

    愿闻楼主高见。
    mathzhaoliang
        23
    mathzhaoliang  
    OP
       2020-08-17 22:31:44 +08:00
    @dongyx  如果问题只要求算 f(n, n) 的值,那么所有的 v_n=f(n,n) 之间满足一个递推关系,所以可以快速求解。
    如果是计算任意 f(x, y) 的值,那确实就得逐个对角线求解了。这个推导过程可以见我的一篇文章
    http://pywonderland.com/mabinogion-sheep-problem/
    ITJoker
        24
    ITJoker  
       2020-08-18 00:16:54 +08:00
    ITJoker
        25
    ITJoker  
       2020-08-18 00:33:09 +08:00
    之前思路大概和你差不多,只不过列出来的公式不是这样,确切的是用我推导的那个公式答案算出来有点偏差,所以放弃了那个思路转拟合思路了,数学用的太少了,害
    hardwork
        26
    hardwork  
       2020-08-19 21:31:32 +08:00
    每一层都是个方程组,10000 层是 9999 元一次方程组,每个方程组的参数需要上一个方程组的解
    计算机递推只想到这种解法。
    或者数学上能直接递推出公式?
    mathzhaoliang
        27
    mathzhaoliang  
    OP
       2020-08-19 21:32:50 +08:00
    @hardwork 对,数学上可以找出递推公式。见 23 楼的链接。
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     2644 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 36ms UTC 11:50 PVG 19:50 LAX 03:50 JFK 06:50
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86