请问 InfluxDB 如何返回筛选后的多个 series 的平均值 series - V2EX
V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
dragonszy
V2EX    问与答

请问 InfluxDB 如何返回筛选后的多个 series 的平均值 series

  •  
  •   dragonszy 2023 年 1 月 11 日 1754 次点击
    这是一个创建于 1123 天前的主题,其中的信息可能已经有所发展或是发生改变。

    之前一直用 pandas 做数据处理,刚接触时序数据库 Influxdb 2.6 ,有个地方不太明白,想请教一下。

    假设 tag 是 lat 和 lon ,组合有(32,119),(33,119),(32,120),(33,120),即32<=lat<=33, 119<=lon<=120

    假设 field 有温度 temperature,风速 wind_speed 等字段

    时间戳范围是 2021-01-01 到 2021-12-31

    我想返回这些经纬度 temperature 和 wind_speed 的平均值时间序列,类似下面这些数据,时间和所需的 field 的均值。

    time,temperature,wind_speed 2021-01-01,10.2,5.2 2021-01-02,11.1,4.2 ..... 2021-12-30,5.6,4.1 2021-12-31,7.6,3.6 

    还有一个补充问题就是能否像 pandas agg 一样,对于不同列(field)做不同统计,比如 temperature 求 mean ,wind_speed 求 max 之类的。

    请问应该如何写 InfluxQL 或者 Flux 语句,求一下大神指导。

    5 条回复    2023-01-16 10:15:43 +08:00
    sc104501
        1
    sc104501  
       2023 年 1 月 11 日
    用最新的 influxdb 的话建议用 flux 。
    首先取温度,做 mean ,结果保存到 a1 。
    然后取风速,做 max ,保存到 a2 。
    最后调用 flux 的 join.inner(),基于“时序+tag”组合两个结果输出就可以了。

    如果找到了更合适的方法告诉我一声,手动狗头。

    另外,经纬度除非可能性特别少,不然还是作为 field 比较合适,max-values-per-tag 根据官方的建议不建议超过 100000 。
    dragonszy
        2
    dragonszy  
    OP
       2023 年 1 月 11 日
    @sc104501 感谢回复,“首先取温度,做 mean ,结果保存到 a1”就是这块不太会弄,之前这么写的,返回值就不是时间序列了,而是每个经纬度的平均值。

    ```
    query = f"""
    from(bucket: "xny_data")
    |> range(start: {start_timestamp}, stop: {end_timestamp})
    |> filter(fn: (r) => r["_measurement"] == "weatherData")
    |> filter(fn: (r) => r["lat"] >= "20")
    |> filter(fn: (r) => r["lon"] >= "119")
    |> filter(fn: (r) => r["_field"] == "cloudcover")
    |> mean()
    """
    tables = query_api.query(query, org="xny")
    for table in tables:
    for record in table.records:
    print(record)
    ```
    返回值
    ```
    [<FluxTable: 9 columns, 1 records>, <FluxTable: 9 columns, 1 records>]
    ```

    ```
    FluxRecord() table: 0, {'result': '_result', 'table': 0, '_start': datetime.datetime(2020, 12, 31, 16, 0, tzinfo=tzutc()), '_stop': datetime.datetime(2021, 12, 31, 16, 0, tzinfo=tzutc()), '_field': 'cloudcover', '_measurement': 'weatherData', 'lat': '32', 'lon': '119', '_value': 43.14566210045662} FluxRecord() table: 1, {'result': '_result', 'table': 1, '_start': datetime.datetime(2020, 12, 31, 16, 0, tzinfo=tzutc()), '_stop': datetime.datetime(2021, 12, 31, 16, 0, tzinfo=tzutc()), '_field': 'cloudcover', '_measurement': 'weatherData', 'lat': '34', 'lon': '120', '_value': 39.43207762557078}
    ```
    sc104501
        3
    sc104501  
       2023 年 1 月 12 日
    @dragonszy 每天一个数据应该是用 aggregateWindow 。按照一个时间窗口汇总数据。
    https://docs.influxdata.com/flux/v0.x/stdlib/universe/aggregatewindow/

    代码没有测试过,可能不对。
    from(bucket: "xny_data")
    |> range(start: {start_timestamp}, stop: {end_timestamp})
    |> filter(fn: (r) => r["_measurement"] == "weatherData")
    |> filter(fn: (r) => r["lat"] >= "20")
    |> filter(fn: (r) => r["lon"] >= "119")
    |> filter(fn: (r) => r["_field"] == "cloudcover")
    |> aggregateWindow(every: 1d, fn: mean)
    dragonszy
        4
    dragonszy  
    OP
       2023 年 1 月 13 日
    @sc104501非常感谢!但是目前还是有个问题,我想得到一个平均值时间序列(不分经纬度),现在采用 aggregateWindow 还是每个经纬度返回一个序列,想知道一下最终得到的是一个根据经纬度平均的序列该怎么做。

    其实意思就是,我有 10 个时间序列,怎么求平均,得到 1 个时间序列。
    sc104501
        5
    sc104501  
       2023 年 1 月 16 日
    @dragonszy 意思是返回的 tables 含有多个表(每个表一个经纬度组合)需要合并成一个坐标范围内的平均值吧。

    如果是数据点数量加权,在 aggregateWindow() 前加上 group() 取消分组。
    - 原始数据每个数据的权重相同。
    如果是“经纬度组合后的时间序列”加权,在 aggregateWindow() 后加上 group() 再用 aggregateWindow() 求一个平均值。
    - 范围内的每个坐标点(采集器?)不管产生的数据多少,权重相同。

    关于 group(),group 完全不带参数就是 ungroup 的功能。
    或者直接用 group 按一个其他指定的 tag 分组,应该也可以避免现在的经纬度分组。
    关于     帮助文档     自助推广系统     博客     API     FAQ     Solana     887 人在线   最高记录 6679       Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 28ms UTC 22:39 PVG 06:39 LAX 14:39 JFK 17:39
    Do have faith in what you're doing.
    ubao msn snddm index pchome yahoo rakuten mypaper meadowduck bidyahoo youbao zxmzxm asda bnvcg cvbfg dfscv mmhjk xxddc yybgb zznbn ccubao uaitu acv GXCV ET GDG YH FG BCVB FJFH CBRE CBC GDG ET54 WRWR RWER WREW WRWER RWER SDG EW SF DSFSF fbbs ubao fhd dfg ewr dg df ewwr ewwr et ruyut utut dfg fgd gdfgt etg dfgt dfgd ert4 gd fgg wr 235 wer3 we vsdf sdf gdf ert xcv sdf rwer hfd dfg cvb rwf afb dfh jgh bmn lgh rty gfds cxv xcv xcs vdas fdf fgd cv sdf tert sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf sdf shasha9178 shasha9178 shasha9178 shasha9178 shasha9178 liflif2 liflif2 liflif2 liflif2 liflif2 liblib3 liblib3 liblib3 liblib3 liblib3 zhazha444 zhazha444 zhazha444 zhazha444 zhazha444 dende5 dende denden denden2 denden21 fenfen9 fenf619 fen619 fenfe9 fe619 sdf sdf sdf sdf sdf zhazh90 zhazh0 zhaa50 zha90 zh590 zho zhoz zhozh zhozho zhozho2 lislis lls95 lili95 lils5 liss9 sdf0ty987 sdft876 sdft9876 sdf09876 sd0t9876 sdf0ty98 sdf0976 sdf0ty986 sdf0ty96 sdf0t76 sdf0876 df0ty98 sf0t876 sd0ty76 sdy76 sdf76 sdf0t76 sdf0ty9 sdf0ty98 sdf0ty987 sdf0ty98 sdf6676 sdf876 sd876 sd876 sdf6 sdf6 sdf9876 sdf0t sdf06 sdf0ty9776 sdf0ty9776 sdf0ty76 sdf8876 sdf0t sd6 sdf06 s688876 sd688 sdf86